N1 Hil

2021

Introduction

’. taichi

QuanTaichi: A Compiler for Quantized Simulations

Yuanming Hu!2, Jiafeng Liu3, Xuanda Yang3, Mingkuan Xul!#, Ye Kuang!, Weiwe1l Xu3, Qiang Dai>, William T. Freeman?, Fredo Durand?

I'Taichi Graphics 2MIT CSAIL

4Tsinghua University

3State Key Laboratory of CAD&CG, Zhejiang University
SKuaishou Technology

® High-resolution simulations can deliver great visual quality, but
they are often limited by available memory, especially on GPUs.

® We present a compiler for physical simulation that can achieve
both high performance and significantly reduced memory
costs, by enabling flexible and aggressive quantization.

Quantization Scheme Computation

Full: 68 B X

m y: float32 mm
ey ——— T
Fy3: float32 F21: float32 L 88

Quant 1:40B v

i fracl9 v:frac19 w:frac19 exp7 || wfloas2 |

GolL
SVD
NeoHookean
MacCormack

Stencil
MGPCG
G2P2G

Quant 2: 40 BX

x: fixed21 y: fixed21 z: fixed21

Domain-Specific Optimization

Store Fusion / Thread Safety Inference / Bit Vectorization

High-Performance Code Generation
Quantized type encoding & decoding

Key ideas

e Use bit-level compression to save memory!

* An example: packing a 2D coordinate ('x" and "y") into 32 bits.

X y
0.9954 0.0100

Signx eXpx frac
X (IEEE 754 “float”) ©0111111011111101101001100001111

signy expy fracy

y (IEEE 754 “float”) ©01111000010010601001100010001000

X, y: ti.quant.float eXPxy Signx fracy signy fracy
(exp=6, fraction=13) B11118611111110110100000001010601

shared exponent
: expx signx fracy expy signy fracy
x, y: ti.quant.iloat — 54494969111111011101000001001007101
(exp=>5, fraction=11)
Signx fracy signy fracy

X, y: ti.quantfixed 551119111091101010000000010100101
(fraction=16, range=2.0)

To realize quantized simulations, we need to implement new
type systems.

e Custom numerical data types:

We support 3 types of custom data types: custom integer, fixed-
point numbers and floating-point numbers

i5 = ti.quant.int(bits=5)

fixed1l7 = ti.quant.fixed(frac=17, range=3.14)
¥ floating-point real numer

f18 = ti.quant.float(exp=4, frac=14)

*Bit adapters

*\We use bit adapters to pack custom data types into hardware-

native types bit_struct

' . I I
* B.It structs: structs of custom int (ci): 6 bits exponent: 5 bits fraction: 5 bits
different custom types.

bit_struct
I

eBit arrays: arrays of

fixed-point: 8 bits custom int: 8 bits
repeated custom types.

ffoMofec INNENENE

bit_array

ci4 ci4 ci4 ci4

*Bit levels pointers

*Bit level pointers are “traditional byte pointers + bit offset.

e With bit pointers byte-level pointers Legend
we can locate each * : * ,
<inole bit | | | 1 byte + byte pointer
5 | RENRRRAR RRRRRNAR)1 oit ~ bit pointer
classical data type: uint16
bit-level pointers
* A /A N\ * VAN N AN N\ N\ *

b T S T S A A A
INIRINARNNENNEEE DENCC NN AENEEED

bit_struct(cib, ci6, ci5) bit_array(ci3x5)

e Domain specific optimizations
e Some of the operations involved in quantized simulations
could be quite costly, so we propose the following domain
specific optimizations for performance:
*Bit struct store fusion
e Thread safety inference
*Bit array vectorization

e With our compiler we implement the following three, to our knowledge,
largest scale simulations on a single GPU respectively.

Game of Life
7.0 GB memory
20,554,956,900 cells

Per cell: 2 B—0.25 B
(8.0x)

Advection-

Reflection
29.3 GB memory
421,134,336 voxels

Per voxel: T1T0 B—=70 B
(1.6%)

MLS-MPM

16.6 GB memory
234,527,481 particles

Per particle: 68B—40B
(1.7%)

¢ Performance

* Thanks to the domain specific optimizations and memory bandwidth
saving, the performance of the quantized simulators is comparable and
even better the non-quantized simulators in our experiments.

e Please check our paper for more details.

Conclusions

* Memory saving: users can save memory(1.6x ~ 8x In our experiments)

with our compiler.
eEasy to use. No more than 3% LoC modification can make a traditional

simulator quantized.
e The performance is comparable, sometimes even better than full-

precision version.

e No significant visual quality degradation (more details in paper)

