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Results

Goal Detailed reconstruction and animation Compare to other detail reconstruction methods

Given a single image of a human face, the goal is to
estimate an accurate 3D model of the person’s head,
with detailed wrinkles, and to animate this face with
natural wrinkle deformations.
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Problem

Previous methods are able to extract wrinkle details
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but do not provide a model that can be animated such
that the details vary with expression.

Contribution

The first approach to learn an E E

animatable displacement model -
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th . | . bl tri Method Median (mm) | Mean (mm) | Std (mm)
syntnesize plausiplie geometric 3DMM-CNN [Tran et al. 2017] 1.84 2.33 2.05 .
details b . . PRNet [Feng et al. 2018b] 1.50 1.98 1.88 Reconstruction error on
etalls by varying expression o Deng et al.19 [2019] 1.23 1.54 1.29 the NoW [1] benchmark.
: RingNet [Sanyal et al. 2019] 1.21 1.54 1.31
parameters. deca.is.tue.mpg.de 3DDFA-V2 [Guo et al. 2020] 1.23 1.57 1.39
MGCNet [Shang et al. 2020] 1.31 1.87 2.63
DECA (ours) 1.09 1.38 1.18

Method

Training and Animation
» estimates parameters to reconstruct face shape for each image

* learns an expression-conditioned displacement model by
leveraging detail consistency information

Training: detail capturing & modeling Application: detailed expressibn animation
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Detail consistency

* uses multiple images of the same
person during training to
disentangle static person-specific
detalls from expression-dependent
detalls.
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